
J 956 Wait: Currents Excited on a Conducting

where

‘= “~’(k’.’-(:)-kl)’kl’
J=– 2F’1Y2

rj(u, v, w) = 2FY[j7X(UY + vg) + KklC2zo].

The unknowns here are the three magnetic field ampli-

tudes and ~. The electric amplitudes are known in terms

of these parameters. The theory leading to these equa-

tions has been rigorous and they are now ready for solu-

tion by numerical methods or by approximation tech-

niques.

It can be shown that there are no pure TE or pure

TM modes allowed in the magnetized case. A similar re-

sult was found by Gamo and Kales in their treatment
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of the longitudinally magnetized c ylindrica,l wa.veguide.

This is physically reasonable since the transverse mag-

netic fields for the TM modes now generate longitudinal

fields through the rotational nature of the ferrite and

thus TM modes would not be expected. Maxwell’s

eqllations permite TE modes only for modes with z,ero

x dependence aud these are Van Trier’s TIE=O modes.

In conclusion we have derived a set of four nonlinear

equations whose solution determines a rigorous solution

to the problem of propagation in a transversely magnet-

ized ferrite-filled waveguide. The fields can be expressed

in the form of products of two trigonometric functions

with arguments which are asymptotic to n~y/b and O

in the limit of zero applied field. ‘The product of these

arguments is dependent only on the magnetic field and

frequency.

Currents IExcited on a Conducting Surface of

Large Radius of Curvature
JAMES R. WAITf

Summary—The nature of the electromagnetic field of an antenna
in the vicinity of a surface of large radius of curvature is dkcussed,

Assuming a spherical surface, the solution for a dipole source in the
form of the Watson residue series is transformed to a more rapidly

converging series which is preferable at short dktances. Using this

result, numerical data is presented in graphical form for the currents

induced on the spherical surface. The curves are applicable to both
a stub and slot antenna mounted on the conducting surface.

N THE VICINITY of a flush-mounted radar an-

1
tenna for aircraft, the fuselage is a smooth conduct-

ing surface having large radii of curvature. It is of

interest to know how the current distribution excited

on this curved surface differs from that on a perfectly

flat surface. It is the purpose clf this paper to investigate

this problem by simulating the curved surface in the

vicinity of the antenna by a spherical surface.

The starting point is to consider the fields of a radial

electric dipole located on a perfectly conducting sphere

of radius a. Choosing a spherical coordinate system

(r, 0, ~), the dipole is locatecf at r = a on the polar axis

and the sphere is bounded by v = a. As is well known,l

the solution of this problem can be expressed in a radial

mode series involving half-order Bessel function whose

arguments are FM where k = 2~/wavelength. Unfortu-

nately, this representation which is often called the lzar-

monic series is very poorly convergent if ka is large com-

~ Natl. Bur. of Standards, Boulder, Colo.
1 H. Bremmer, “Terrestlal Radio Waves, ” Elsevier Pub. Co.

Amsterdam, Holland; 1949.

pared to unity. In fact, something of the order of 2 ka

terms are required to evaluate the field at any point in

space. It was first shown by Watson in 1.918 that the

radial mode or harmonic series could be transformed to

the angular mode or residues series.1 This Watson repre-

sentation is highly convergent in certain regions of

space, namely, deep in the geometrical s’hadow of the

source. However, when the observer is in the space n~ear

the dipole source, the series becomes poorly convergent.

It is the principal task in this paper to derive an al-

ternative expansion which is particularly suitable for

calculating the surface currents excited on the spherical

surface when O is small and ka is large.

The fields of the dipole can be expressed in terms of a

scalar function V as follows:1

‘v= (’2+:)(’-”)
1 a’

‘r attlo ‘r’)
Eo=— ————

13v
H4==-iECO% (1)

where e = 8.854X 10–lZ and the time factor exp (itit) has

been omitted. The surface current density 1, in am-

peres/meter, on the spherical surface has only a radial

component. It is given by

I = Ho],=.
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Using the residues-series representation for v developed

by Van der Pol and Bremmerl it is easy to show that

I = IOU (2)

where 10 is the current density for a sphere of infinite

radius or a flat surface and

m exp [— iTqX2/3]
u = [27riaP/3]1/’ ~

2Tq
(3)

*=0

where x = (kd)312/ka with d = ad. The coefficient rg is the

qth root of

Hz/,(z)[1/3(– 27.)3/’] = o (4)

where lZ213@J[z] is the Hankel function of the second

kind of order # and argument z. The roots of the Hankel

function are tabulated by Watson,’ Eq. (3) is an ap-

proximation valid for a, large compared to both the

wavelength and the distance d, from the source to the

observer.

Following a crucial suggestion of Dr. H. Bremmer3 U

is now expressed as a Bromwich contour integral as fol-

lows

[

(–2i) 3/’ ~3,,
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.+i~esgH1,3(2) 3 1— ds (5)
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3 1
where g =X21’ and c is some positive real constant. It can

be verified by the theory of functions that the sum of

the residues at the poles of the integrand leads back to

the series representation for U in (3). Symbolically the

above equation can be written

[

(–-2;) ’/2

LU = ‘1’2’-’5=’6 “’3’2’ 3 ‘3’2
1

(6)
~llz

[

(_2~)’/2
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where the operator L indicates that the right-hancf side

of this equation is the Laplace transform4 with respect

to g of u.
It is now proposed to obtain a series formula for U in

positive powers of g by developing L U in an asymptotic

expansion in power of 1/s. In order to develop the Han-

kel functions in their asympotic expansions, it is neces-

sary to assure that the phase of the argument lies with-

in the range – 27r to r. Noting that s will range in

values from +; ~ to — i cc it is desirable to multiply the

arguments of the Hankel functions in (6) by e–~iff.

2 G. N. Watson, “Theory of Bessel Functions, ” 2nd ed., 1945.
3 Private communication.
1 R. V. Churchill, “Operational Methods in Engineering, ” Mc-

Graw-Hill Book Co. Inc., New York, N. Y.; 1944.

Using the identity’

H,,,(’) [~] Hi/3(2) [Ze+]
ir

H2,3(2) [~ = e H,,, (N [ze-3iT]

it follows that

July

(7)

H1,3(2J [– ;11’(2s)3/2/3]
LU = (g/s)l/2e;~le —

H2,3(’) [– iW(2s)31z/s] “
(8)

Denoting – il/2(2s)3/2/3 by Z, the following asymptotic

expansions are now valid:

()H1,3(2J(Z) = ; l/2e–i(Z–(5T/12))
m (–1)’fyl/3, m)

E
(2iz) m

(9)
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and

()H2,3(21(Z) = ; 1/2e–4(Z–(7T/12))
m (– 1)~(2/3, m) ~10)

E
m=o (2iz)

with

(V, m) =
(v+m– 1/2)!

~!(v – ~ – 1/2)!”

It then follows that
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[

7 .7
=e–i7r16 l+ :__

HZ,3(2J(Z)
—+”””

62 7222 – %7223 1.(11)

The desired asymptotic expansion is then given by

‘u= (T’)’’2[H+)’’2:A’A
()1 1/2 21

+~ 1—+”””.
128s5

Employing the basic relations

1 m g“-1

s
~“-1

—=

0 (v–l)!
e–gsdg = L

s’ (v– 1)!

it now readily follows that

=1/2
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where x = (kd)3/~/ka.

(12)

(13)

(14)

(15)



1956 Strum: A Nofe on

It can be seen that as d tends to zero or u tends to in-

finity, the value of U approaches unity corresponding

to the dipole on a flat conducting surface.b

The series, which can be called the 3rd order curva-

ture corrected series, converges adequately for x less

than about 1.5. Writing

U= jUl e-@

then I UI and @ are the amplitude and phase lag, re-

spectively, of the correction fa,ctor U. Numerical values

are computed from (15) and shown plotted in Fig. 1

for x ranging from 0.1 to 3. Values of I U] and @ ob-

tained from the residue series formula in (3) are also

shown on Fig. 1. The agreement between the two sets

of curves is excellent unless x exceeds about 2.o. When

x is of the order of 0.1 or less, greater than 100 terms in

the residue series are required to obtain three figure

accuracy, whereas only the term in x need be retained

in the curvature corrected series for U. At larger values

of x, say greater than 2 or 3, only several terms in the

residue series are required, whereas the curvature cor-

rected series would be very poorly convergent.

Although the preceding theory was developed ex-

plicitly for a radial electric dipole source, the results are

directly applicable to the current excited on a spherical

surface by a narrow slot or its equivalent magnetic di-

pole. Eq. (2) relating the current 1 on the curved sur-

face to the current 10 on a flat surface is only strictly

valid in the broadside direction from the narrow slot as

t Bremmer, 10C.cit., has developed expansion formulas, similar to
(15), which are expressed in powers of a factor 6 which is approximate-
ly proportional to the complex refractive index of the sphere, which in
the present analysis is effectively infinite.
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Fig. l—The ratio of the current induced by a slc,t on a curved
surface to that on a flat surface.

indicated in the inset in Fig. 1. If kd is much greater

than unity, however, the equation is also valid in other

directions from the slot. It can now be expected that

the mutual impedance Z~ between any two slots

oriented for other than minimum coupling on a spher-

ical surface of large radius of curvature a is related~to

the mutual impedance Zo~ for the same slots on a flat

surface by the formula

2. G Uzom.

In this case, d is taken as the distance between the ,cen-

ters of the slots.

A Note on Noise Temperature
PETER D. STRUM~

Summary—The effective noise temperature of the output imped-

ance of a Iossy passive network at an arbitrary noise temperature con-

nected to one or more resistive loads at arbitrary noise temperature

lies between the highest and the lowest of these noise temperatures,

as determined by the losses between the output terminals and the

loads. The determination of the effective noise temperature of a gas-

discharge noise generator over a wide frequency range is simplified

by the substitution of a loss measurement for the more dMicult noise

temperature measurement. For minimum-noise radar applications

care must be used in considering the excess noise of crystal mixers

and gas-dkcharge duplexers. The influeuce of galactic radiation on

a receiving system is such that there is an optimum frequency in the

~ Ewen Knight Corp., Needham Heightsj hlass. Formerly at .4ir
borne Instruments Lab., Mineola, N .Y.

region of 200 to 600 mc for minimum $‘operating noise ii gure.~> Typi-
cal examples of radio-astronomy measurements are amenable to
analysis of the type given. Finally, several corrections to measured

noise figure are analyzed.

INTRODUCTION

T
HE OUTPUT noise power of many widely used

devices is conveniently expressed in terms of an

equivalent noise temperature-that is, the tem-

perature of a passive resistor that would generate an

equivalent available noise power. In the case of direc-

tional antennas and gas-discharge noise generators,, the

term noise temperature is accurately applied because,

in one case, the antenna is directed intc) space, which


