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where

J = - 2Fk1y2
é(u, v, w) = 2FuljyX(ur + vg) + Kk 2w).

The unknowns here are the three magnetic field ampli-
tudes and . The electric amplitudes are known in terms
of these parameters. The theory leading to these equa-
tions has been rigorous and they are now ready for solu-
tion by numerical methods or by approximation tech-
niques.

It can be shown that there are no pure TE or pure
TM modes allowed in the magnetized case. A similar re-
sult was found by Gamo and Kales in their treatment
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of the longitudinally magnetized cylindrical waveguide.
This is physically reasonable since the transverse mag-
netic fields for the TM modes now generate longitudinal
fields through the rotational nature of the ferrite and
thus TM modes would not be expected. Maxwell's
equations permite TE modes only for modes with zero
x dependence and these are Van Trier’s TE,, modes.

In conclusion we have derived a set of four nonlinear
equations whose solution determines a rigorous solution
to the problem of propagation in a transversely magnet-
ized ferrite-filled waveguide. The fields can be expressed
in the form of products of two trigonometric functions
with arguments which are asymptotic to #my/b and 0
in the limit of zero applied field. The product of these
arguments is dependent only on the magnetic field and
frequency.

Currents Excited on a Conducting Surface of

Large Radius of Curvature
JAMES R. WAITY

Summary—The nature of the electromagnetic field of an antenna
in the vicinity of a surface of large radius of curvature is discussed.
Assuming a spherical surface, the solution for a dipole source in the
form of the Watson residue series is transformed to a more rapidly
converging series which is preferable at short distances. Using this
result, numerical data is presented in graphical form for the currents
induced on the spherical surface. The curves are applicable to both
a stub and slot antenna mounted on the conducting surface.

N THE VICINITY of a flush-mounted radar an-
I[ tenna for aircraft, the fuselage is a smooth conduct-
ing surface having large radii of curvature. It is of
interest to know how the current distribution excited
on this curved surface differs from that on a perfectly
flat surface. It is the purpose of this paper to investigate
this problem by simulating the curved surface in the
vicinity of the antenna by a spherical surface.

The starting point is to consider the fields of a radial
electric dipole located on a perfectly conducting sphere
of radius a. Choosing a spherical coordinate system
(r, 8, ¢), the dipole is located at »=a on the polar axis
and the sphere is bounded by r=a. As is well known,}
the solution of this problem can be expressed in a radial
mode series involving half-order Bessel function whose
arguments are ka where k=2r/wavelength. Unfortu-
nately, this representation which is often called the har-
monic series is very poorly convergent if ka is large com-

1 Natl. Bur. of Standards, Boulder, Colo.
1 H. Bremmer, “Terrestial Radio Waves,” Elsevier Pub. Co.
Amsterdam, Holland; 1949.

pared to unity. In fact, something of the order of 2 ka
terms are required to evaluate the field at any point in
space. It was first shown by Watson in 1918 that the
radial mode or harmonic series could be transformed to
the angular mode or residues series.! This Watson repre-
sentation is highly convergent in certain regions of
space, namely, deep in the geometrical shadow of the
source. However, when the observer is in the space near
the dipole source, the series becomes poorly convergent.

It is the principal task in this paper to derive an al-
ternative expansion which is particularly suitable for
calculating the surface currents excited on the spherical
surface when 6 is small and ka is large.

The fields of the dipole can be expressed in terms of a
scalar function v as follows:!

(')2
E, = (kz + 3;) (r0)

1 92
Eo=— e
. 0y
Hy = — few > €))

where € =8.854 X101 and the time factor exp (¢wt) has
been omitted. The surface current density I, in am-
peres/meter, on the spherical surface has only a radial
component. [t is given by

I = Hq‘)]r:a
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Using the residues-series representation for v developed
by Van der Pol and Bremmer?! it is easy to show that

where I, is the current density for a sphere of infinite
radius or a flat surface and

. exp | — trgx’?
U= [2wix2s]riz 3 __P_[—‘I] (3)
a=0 27,
where x = (kd)*?/ka with d =af. The coefficient 1, is the
gth root of

Hos®[1/3(— 2r)32] = 0 4)

where Hy;3® [z] is the Hankel function of the second
kind of order £ and argument z. The roots of the Hankel
function are tabulated by Watson.? Eq. (3) is an ap-
proximation valid for @, large compared to both the
wavelength and the distance d, from the source to the
observer.

Following a crucial suggestion of Dr. H. Bremmer® U
is now expressed as a Bromwich contour integral as fol-
lows

U= 1 gl/2g=snl6
271
(—24)3:2

33/2
f¢+ioo esv H1/3(2) 3
[

i V2 (—2i)32
Hs s ® T33/2

where g =23 and ¢ is some positive real constant. It can
be verified by the theory of functions that the sum of
the residues at the poles of the integrand leads back to
the series representation for U in (3). Symbolically the
above equation can be written

, [(—20%”
. Hys® | 32
g1/26——1.51r/6 3
LU = (6)

s1/2 (—24)32
Hyps® l:_— Sa/z:l
3

where the operator L indicates that the right-hand side
of this equation is the Laplace transform* with respect
to g of U.

It is now proposed to obtain a series formula for U in
positive powers of g by developing LU in an asymptotic
expansion in power of 1/s. In order to develop the Han-
kel functions? in their asympotic expansions, it is neces-
sary to assure that the phase of the argument lies with-
in the range —27 to w. Noting that s will range in
values from 44 to —iw it is desirable to multiply the
arguments of the Hankel functions in (6) by e %,

©)

2 G, N. Watson, “Theory of Bessel Functions,” 2nd ed., 1945.

3 Private communication.

4 R. V. Churchill, “Operational Methods in Engineering,” Mc-
Graw-Hill Book Co. Inc., New York, N.Y.; 1944,
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Using the identity?

Hys® [z]
Hys™ 5]

_ e Hyps® [ze—g.i"’] o
Hojs® [23—317r]

it follows that
Hys® [~ 112(25)%2/3]

LU = (g/s)t2inls .
&/ Hyy [~ 11%(25)%1%/3]

(8)

Denoting —i'/2(25)3/3 by Z, the following asymptotic
expansions? are now valid:

2 . 2 (=1)=(1/3, m)
H (2) Z — - \Y/2,—i{Z— (57w [12)) 9
y3P(Z) <7rZ> € 72 (2iZ)™ 9)

and
Hopy®(Z) = <_2__>1/23—i<z—(77r/12)> o (=1)™(2/3,m) (10)

y = i)
with

O+ m— 1/2)1
(v, m) = )
milv —m — 1/2)!

It then follows that
Hys2(Z ; 7
_.1/_3_(_)=e—i7r/6|:1+_z._ i +...]_(11)
Hys™(Z) 6z 1270 7278

The desired asymptotic expansion is then given by

LU = (wg)w[ ! —<i>1/2 ! +i !
st N2/ 4t 64T

1\12 21
+ (Z) e T J (12
Employing the basic relation®
1 R —1
- = i (V_g-:T); ¢ 9%dg = L _(ugfl)_f (13)
it now readily follows that
172 7
U= 1——8“(14- i)g3/2+?2—633
w27 (1 — 4) o/s
oas 0T (14)
or
/2 Tl
U=|:1——8—x+2048x3—l—---:|
R 7 Trtl2
B zl}s—x_iz—()xszQOzwx“r o :| =

where x = (kd)%2/ka.
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It can be seen that as d tends to zero or ¢ tends to in-
finity, the value of U approaches unity corresponding
to the dipole on a flat conducting surface.

The series, which can be called the 3rd order curva-
ture corrected series, converges adequately for x less
than about 1.5. Writing

U= |U|en

then I UI and & are the amplitude and phase lag, re-
spectively, of the correction factor U. Numerical values
are computed from (15) and shown plotted in Fig. 1
for x ranging from 0.1 to 3. Values of | U| and & ob-
tained from the residue series formula in (3) are also
shown on Fig. 1. The agreement between the two sets
of curves is excellent unless x exceeds about 2.0. When
% 1s of the order of 0.1 or less, greater than 100 terms in
the residue series are required to obtain three figure
accuracy, whereas only the term in x need be retained
in the curvature corrected series for U. At larger values
of x, say greater than 2 or 3, only several terms in the
residue series are required, whereas the curvature cor-
rected series would be very poorly convergent.
Although the preceding theory was developed ex-
plicitly for a radial electric dipole source, the results are
directly applicable to the current excited on a spherical
surface by a narrow slot or its equivalent magnetic di-
pole. Eq. (2) relating the current I on the curved sur-
face to the current Iy on a flat surface is only strictly
valid in the broadside direction from the narrow slot as

5 Bremmer, loc. ¢it., has developed expansion formulas, similar to
(15), which are expressed in powers of a factor § which is approximate-
ly proportional to the complex refractive index of the sphere, which in
the present analysis is effectively infinite.
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Fig. 1—The ratio of the current induced by a slot on a curved
surface to that on a flat surface.

indicated in the inset in Fig. 1. If kd is much greater
than unity, however, the equation is also valid in other
directions from the slot. It can now be expected that
the mutual impedance Z, between any two slots
oriented for other than minimum coupling on a spher-
ical surface of large radius of curvature g is relatedlto
the mutual impedance Z,» for the same slots on a flat
surface by the formula

Zn = UlZom.

In this case, d is taken as the distance between the cen-
ters of the slots.

A Note on Noise Temperature
PETER D. STRUMT

Summary—The effective noise temperature of the output imped-
ance of a lossy passive network at an arbitrary noise temperature con-
nected to one or more resistive loads at arbitrary noise temperature
lies between the highest and the lowest of these noise temperatures,
as determined by the losses between the output terminals and the
loads. The determination of the effective noise temperature of a gas-
discharge noise generator over a wide frequency range is simplified
by the substitution of a loss measurement for the more difficult noige
temperature measurement. For minimum-noise radar applications
care must be used in considering the excess noise of crystal mixers
and gas-discharge duplexers. The influence of galactic radiation on
a receiving system is such that there is an optimum frequency in the

T Ewen Knight Corp., Needham Heights, Mass. Formerly at Air-
borne Instruments Lab., Mineola, N.Y.

region of 200 to 600 mc for minimum ‘‘operating noise figure.” Typi-
cal examples of radio-astronomy measurements are amenable to
analysis of the type given. Finally, several corrections to measured
noise figure are analyzed.

INTRODUCTION

HE OUTPUT noise power of many widely used
devices is conveniently expressed in terms of an
equivalent noise temperature—that is, the tem-
perature of a passive resistor that would generate an
equivalent available noise power. In the case of direc-
tional antennas and gas-discharge noise generators, the
term noise temperature is accurately applied because,
in one case, the antenna is directed into space, which



